
464 Chapter 6 Combinational Design Examples

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

decisions that a designer must make when an entire circuit does not fit into a
single component.

A VHDL-based approach is especially appropriate for larger designs that
will be realized in a single CPLD, FPGA or ASIC, as described in the third sec-
tion. You may notice that these examples do not target a specific CPLD or
FPGA. Indeed, this is one of the benefits of HDL-based design; most or all of the
design effort is “portable” and can be targeted to any of a variety of technologies.

The only prerequisites for this chapter are the chapters that precede it. The
three sections are written to be pretty much independent of each other, so you
don’t have to read about ABEL if you’re only interested in VHDL, or vice versa.
Also, the rest of the book is written so that you can read this chapter now or skip
it and come back later.

6.1 Building-Block Design Examples
6.1.1 Barrel Shifter
A barrel shifter is a combinational logic circuit with n data inputs, n data
outputs, and a set of control inputs that specify how to shift the data between
input and output. A barrel shifter that is part of a microprocessor CPU can
typically specify the direction of shift (left or right), the type of shift (circular,
arithmetic, or logical), and the amount of shift (typically 0 to n–1 bits, but
sometimes 1 to n bits).

In this subsection, we’ll look at the design of a simple 16-bit barrel shifter
that does left circular shifts only, using a 4-bit control input S[3:0] to specify the
amount of shift. For example, if the input word is ABCDEFGHGIHKLMNOP
(where each letter represents one bit), and the control input is 0101 (5), then the
output word is FGHGIHKLMNOPABCDE.

From one point of view, this problem is deceptively simple. Each output bit
can be obtained from a 16-input multiplexer controlled by the shift-control
inputs, which each multiplexer data input connected to the appropriate On the
other hand, when you look at the details of the design, you’ll see that there are
trade-offs in the speed and size of the circuit.

Let us first consider a design that uses off-the-shelf MSI multiplexers. A
16-input, one-bit multiplexer can be built using two 74x151s, by applying S3
and its complement to the EN_L inputs and combining the Y_L data outputs with
a NAND gate, as we showed in Figure 5-66 for a 32-input multiplexer. The low-
order shift-control inputs, S2–S0. connect to the like-named select inputs of the
’151s.

We complete the design by replicating this 16-input multiplexer 16 times
and hooking up the data inputs appropriately, as shown in Figure 6-1. The top
’151 of each pair is enabled by S3_L, and the bottom one by S3; the remaining
select bits are connected to all 32 ’151s. Data inputs D0–D7 of each ’151 are
connected to the DIN inputs in the listed order from left to right.

barrel shifter

Section 6.1 Building-Block Design Examples 465

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

The first row of Table 6-1 shows the characteristics of this first approach.
About 36 chips (32 74x151s, 4 74x00s, and 1/6 74x04) are used in the MSI/SSI
realization. We can reduce this to 32 chips by replacing the 74x151s with
74x251s and tying their three-state Y outputs together, as tabulated in the second
row. Both of these designs have very heavy loading on the control inputs; each of
the control bits S[2:0] must be connected to the like-named select input of all 32
multiplexers. The data inputs are also fairly heavily loaded; each data bit must
connect to 16 different multiplexer data inputs, corresponding to the 16 possible
shift amounts. However, assuming that the heavy control and data loads don’t
slow things down too much, the 74x251-based approach yields the shortest data
delay, with each data bit passing through just one multiplexer.

Alternatively, we could build the barrel shifter using 16 74x157 2-input,
4-bit multiplexers, as tabulated in the last row of the table. We start by using four
74x157s to make a 2-input, 16-bit multiplexer. Then, we can hook up a first set

Multiplexer
Component

Data
Loading

Data
Delay

Control
Loading

Total
ICs

Ta b l e 6 - 1
Properties of four
different barrel-shifter
design approaches.74x151 16 2 32 36

74x251 16 1 32 32

74x153 4 2 8 16

74x157 2 4 4 16

74x151

74x151

DIN[15:8]

DIN[7:0]
DOUT[15]

74x151

74x151

DIN[14:7]

DIN[6:0,15]
DOUT[14]

74x151

74x151

DIN[13:6]

DIN[5:0,15:14]
DOUT[13]

74x151

74x151

DIN[1:0,15:10]

DIN[9:2]
DOUT[1]

74x151

74x151

DIN[0,15:9]

DIN[8:1]
DOUT[0]

DIN[15:0]

S3
S[3:0]

S[2-0]

S3_L DOUT[15:0]

Figure 6-1
One approach to
building a 16-bit
barrel shifter.

466 Chapter 6 Combinational Design Examples

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

of four ’157s controlled by S0 to shift the input word left by 0 or 1 bit. The data
outputs of this set are connected to the inputs of a second set, controlled by S1,
which shifts its input word left by 0 or 2 bits. Continuing the cascade, a third and
fourth set are controlled by S2 and S3 to shift selectively by 4 and 8 bits, as
shown in Figure 6-2. Here, the 1A-4A and 1B-4B inputs and the 1Y-4Y outputs of
each ’157 are connected to the indicated signals in the listed order from left to
right.

The ’157-based approach requires only half as many MSI packages and
has far less loading on the control and data inputs. On the other hand, it has the
longest data-path delay, since each data bit must pass through four 74x157s.

Halfway between the two approaches, we can use eight 74x153 4-input,
2-bit multiplexers two build a 4-input, 16-bit multiplexer. Cascading two sets of
these, we can use S[3:2] to shift selectively by 0, 4, 8, or 12 bits, and S[1:0] to
shift by 0–3 bits. This approach has the performance characteristics shown in the
third row of Table 6-1, and would appear to be the best compromise if you don’t
need to have the absolutely shortest possible data delay.

The same kind of considerations would apply if you were building the
barrel shifter out of ASIC cells instead of MSI parts, except you’d be counting
chip area instead of MSI/SSI packages.

Typical ASIC cell libraries have 1-bit-wide multiplexers, usually realized
with CMOS transmission gates, with 2 to 8 inputs. To build a larger multiplexer,
you have to put together the appropriate combination of smaller cells. Besides
the kind of choices we encountered in the MSI example, you have the further
complication that CMOS delays are highly dependent on loading. Thus, depend-
ing on the approach, you must decide where to add buffers to the control lines,
the data lines, or both to minimize loading-related delays. An approach that
looks good on paper, before analyzing these delays and adding buffers, may
actually turn out to have poorer delay or more chip area than another approach.

X[11:8]

DIN[15:12]

DIN[14:11]

DIN[11:8]

DIN[10:7]

DIN[7:4]

DIN[6:3]

DIN[3:0]

DIN[2:0,15]

DIN[15:0]
S0

S[3:0]

74x157
X[15:12]

74x157

74x157

74x157

X[7:4]

X[3:0]

X[15:12]

X[13:10]

X[11:8]

X[9:6]

X[7:4]

X[5:2]

X[3:0]

X[1:0,15:14]

S1

74x157

74x157

74x157

74x157

Y[11:8]

Y[15:12]

Y[7:4]

Y[3:0]

Y[15:12]

Y[11:8]

Y[11:8]

Y[7:4]

Y[7:4]

Y[3:0]

Y[3:0]

Y[15:12]

S2

74x157

74x157

74x157

74x157

Z[11:8]

Z[15:12]

Z[7:4]

Z[3:0]

Z[15:12]

Z[7:4]

Z[11:8]

Z[3:0]

Z[7:4]

Z[15:12]

Z[3:0]

Z[11:8]

S3

74x157

74x157

74x157

74x157

DOUT[11:8]

DOUT[15:12]

DOUT[7:4]

DOUT[3:0]

DOUT[15:0]

Figure 6-2 A second approach to building a 16-bit barrel shifter.

